Subscribe Us

Get free daily email updates!

Follow us!

Thursday, June 23, 2011

Heterogeneous Networking: The Notion of Relaying in LTE


The possibility of a terminal communicating with the network, and the data rate that can be used, depends on several factors, the path loss between the terminal and the base station being one. The link performance of LTE is already quite close to the Shannon limit and from a pure link-budget perspective, the highest data rates supported by LTE require a relatively high signal-to-noise ratio. Unless the link budget can be improved, for example with different types of beam-forming solutions, a denser infrastructure is required to reduce the terminal-to-base-station distance and thereby improve the link budget.


A denser infrastructure is mainly a deployment aspect, but in later releases of LTE, various tools enhancing the support for low-power base stations are included. One of these tools is relaying, which can be used to reduce the distance between the terminal and the infrastructure, resulting in an improved link budget and an increased possibility for high data rates. In principle this reduction in terminal-to-infrastructure distance could be achieved by deploying traditional base stations with a wired connection to the rest of the network. However, relays with a shorter deployment time can often be an attractive alternative, as there is no need to deploy a specific backhaul.

LTE release 10 introduces support for a decode-and-forward relaying scheme (commonly referred to as repeaters, a decode-and-forward relays simply amplify and forward the received analog signals and are, on some markets, relatively common as a tool for handling coverage holes. Traditionally, once installed, repeaters continuously forward the received signal regardless of whether there is a terminal in their coverage area or not, although more advanced repeaters can be considered as well. Repeaters are transparent to both the terminal and the base station and can therefore be introduced in existing networks.).

A basic requirement in the development of LTE relaying solutions was that the relay should be transparent to the terminal – that is, the terminal should not be aware of whether it is connected to a relay or to a conventional base station. This ensures that release-8/9 terminals can also be served by relays, despite relays being introduced in release 10. Therefore, so-called self-backhauling was taken as the basis for
the LTE relaying solution. In essence, from a logical perspective, a relay is an eNodeB wirelessly connected to the rest of the radio-access network by using the LTE radio interface. It is important to note that, even though the relay from a terminal perspective is identical to an eNodeB, the physical implementation may differ significantly, from a traditional base station, for example in terms of output power. In conjunction with relaying, the terms backhaul link and access link are often used to refer to the base station–relay connection and the relay–terminal connection respectively. The cell to which the relay is connected using the backhaul link is known as the donor cell and the donor cell may, in addition to one or several relays, also serve terminals not connected via a relay. This is illustrated below;
Since the relay communicates both with the donor cell and terminals served by the relay, interference between the access and backhaul links must be avoided. Otherwise, since the power difference between access-link transmissions and backhaul-link reception at the relay can easily be more than
100 dB, the possibility of receiving the backhaul link may be completely ruined. Similarly, transmissions on the backhaul link may cause significant interference to the reception of the access link. These two cases are illustrated in the illustration below.
Therefore, isolation between the access and backhaul links is required, isolation that can be obtained in one or several of the frequency, time, and/or spatial domains. Depending on the spectrum used for access and backhaul links, relaying can be classified into outband and inband types. Outband relaying implies that the backhaul operates in a spectrum separate from that of the access link, using the same radio interface as the access link. Provided that the frequency separation between the backhaul and access links is sufficiently large, interference between the backhaul and access links can be avoided and the necessary isolation is obtained in the frequency domain. Consequently, no enhancements to the release-8 radio interface are needed to operate an outband relay. There are no restrictions on the activity on the access and backhaul links and the relay can in principle operate with full duplex. Inband relaying implies that the backhaul and access links operate in the same spectrum. Depending on the deployment and operation of the relay, this may, as the access and backhaul link share the same spectrum, require additional mechanisms to avoid interference between the access and backhaul links. Unless this interference can be handled by proper antenna arrangements, for example with the relay deployed in a tunnel with the backhaul antenna placed outside the tunnel, a mechanism to separate activity on the access and backhaul links in the time domain is required. Such a mechanism was introduced as part of release 10 and will be described in more detail in the following. Since the backhaul and access links are separated in the time domain, there is a dependency on the transmission activity and the two links cannot operate simultaneously.



Overall Architecture

From an architectural perspective, a relay can, on a high level, be thought of as having a “base-station side” and a “terminal side”. Towards terminals, it behaves as a conventional eNodeB using the access link, and a terminal is not aware of whether it is communicating with a relay or a “traditional” base station. Relays are therefore transparent for the terminals and terminals from the first LTE release, release 8, can also benefit from relays. This is important from an operator’s perspective, as it allows a gradual introduction of relays without affecting the existing terminal fleet. Towards the donor cell, a relay initially operates as a terminal, using the LTE radio interface to connect to the donor cell. Once connection is established and the relay is configured, the relay uses a subset of the “terminal side” functionality for communication on the backhaul link. In this phase, the relay-specific enhancements described in this chapter may be used for the backhaul. In release 10, the focus is on two-hop relaying and scenarios with a relay connected to the network via another relay are not considered. Furthermore, relays are stationary – that is, handover of a relay from one donor cell to another donor cell is not supported. The case for using mobile relays is not yet clear and therefore it was decided in release 10 not to undertake the relatively large task of adapting existing core-network procedures to handle cells that are moving over time, something that could have been a consequence of a mobile relay. The overall LTE relaying architecture is illustrated below. One key aspect of the architecture is that the donor eNodeB acts as a proxy between the core network and the relay. From a relay perspective, is appears as if it is connected directly to the core network as the donor eNodeB appears as an MME for the S1 interface and an eNodeB for X2 towards the relay.
From a core-network perspective, on the other hand, the relay cells appear as if they belong to the donor eNodeB. It is the task of the proxy in the donor eNodeB to connect these two views. The use of a proxy is motivated by the desire to minimize the impact to the core network from the introduction of relays, as well as to allow for features such as tight coordination of radio-resource management between the donor eNodeB and the relay.







0 Responses to “ Heterogeneous Networking: The Notion of Relaying in LTE ”

Post a Comment